IE 598 NH
IE 598 NH - Big Data Optimization
Spring 2018
Title | Rubric | Section | CRN | Type | Hours | Times | Days | Location | Instructor |
---|---|---|---|---|---|---|---|---|---|
Big Data Optimization | IE598 | NH | 67114 | LEC | 4 | 1600 - 1720 | M W | 203 Transportation Building | Niao He |
See full schedule from Course Explorer
Documents
Official Description
Subject offerings of new and developing areas of knowledge in industrial engineering intended to augment the existing curriculum. See Class Schedule or departmental course information for topics and prerequisites. Course Information: Approved for letter and S/U grading. May be repeated in the same or separate terms if topics vary.
Section Description
Students are expected to have strong working knowledge iof linear algebra, real analysis, and probability theory. Some prior exposure to optimization and algorithms at a graduate level is preferred. The course will cover a variety of advanced topics in optimization theory, algorithms and applications in machine learning. The key aim of this course is to expose students to modern algorithmic developments in convex optimization (smooth, non-smooth, deterministic, stochastic, and online) and bring them near the frontier of current research in large-scale optimization and machine learning.