ISE Final Exam: Stochastic Optimization with Decisions Truncated by Random Variables and Its Applications in Operations

Speaker Xiangyu Gao, PhD Candidate, Industrial Engineering
Date: 6/12/2017
Time: 9 a.m.

303 Transportation Building

Event Contact: Holly Kizer, Assistant Director of Graduate Studies

Industrial & Enterprise Systems Engineering

Event Type: Seminar/Symposium


A common technical challenge encountered in many operations management models is that decision variables are truncated by some random variables and the decisions are made before the values of these random variables are realized, leading to non-convex minimization problems. To address this challenge, we develop a powerful transformation technique which converts a non-convex minimization problem to an equivalent convex one. We show that such a transformation enables us to prove the preservation of some desired structural properties, such as convexity, submodularity, and L-natural-convexity, under optimization operations, which are critical for identifying the structures of optimal policies, conducting comparative statics, and developing efficient algorithms. We then demonstrate the applications of our approach to several important models in inventory control and revenue management. Additionally, we propose an efficient algorithm combining our transformation technique and piecewise-linear decision rule approach.

To request disability-related accommodations for this event, please contact the person listed above, or the unit hosting the event.