Graduate research analyzes optimization of facility design

Emily Scott

Ph.D. student Ketan Date’s research is developing new ways for companies to design their facilities and increase efficiency.

Since beginning his graduate research at the Department of ISE in 2013, Date has applied his mathematical background to solving real-world problems. 

His research has focused specifically on figuring out how to optimally design layouts of manufacturing facilities. Manufacturing facilities typically house several machines, but they need to be placed in an efficient way. 

Date developed a mathematical model to design efficient layouts that can be used by companies that are moving to new facilities due to increased demand or productivity. 

When moving to a new location, companies typically want to redesign the layout of their facilities. So Date considered the way that people work with machines, and the way machines work with other machines, when thinking about layout design. 

“If you are taking too much time going from one machine to the other, it costs you something. It’s not a direct cost, but it takes up your time,” he said. “If two machines are communicating more, then they should be placed close to each other.” 

Date developed a mathematical model that considers these constraints and comes up with the most efficient design for the layout of new facilities. 

But another problem arises when this model is used in situations that involve a large number of machines. 

“You have to have a lot of computing power for solving even a modest-sized problem,” Date said of the model. 

So he began to figure out a way to use other models that can be solved faster by using parallel computing. In parallel computing, multiple processors divide the work among each other and solve a big problem in a faster manner. 

In other research, this method has been carried out by using a computer’s central processing unit, which carries out the instructions of a computer program. 

Date instead decided to use the graphics processing unit, which is typically used in gaming applications, to develop faster solutions. 

Graphics processing units have more cores — specific units in the processors that perform computations — than central processing units. 

“Basically you can divide your work among a large number of chunks, and a single graphics card is able to solve a problem faster than a single central processing unit,” Date said. 

This problem was studied over a decade ago, but not in a way that specifically dealt with the finite-size facility placement problem that Date studied. 

“That’s why I wanted to explore the area and see if we can develop a general theory for placing machines in facilities, plus we wanted to see if we can be efficient in solving those problems,” he said.

His research is highly applicable to today’s industries because manufacturing companies typically redesign the layout of their facilities every two to three years. 

Date said he enjoys studying problems like these because they involve both mathematical theory and applications to real-world problems. 

He hopes to continue to work in the overlap between applied work and theoretical mathematics, and his goal is to become a faculty member at a research university. 

“Being an academic is like the only dream job that I can have, because I love to teach students,” Date said. “I love to guide them and help them out in their problems, and I enjoy research as well.”


Recent News